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 Distribution network expansion planning denotes where, when and how many new lines 
should be installed at distribution system in order to cope with load growing. In 

distribution systems, the load is usually increased and an expansion planning is required 

to satisfy the demand in the future. In this paper, distribution network expansion 
planning is presented to deal with load evolution. The expansion problem is 

mathematically formulated as a constrained optimization programming and solved by 

using genetic algorithms. A radial distribution network is considered as test system. The 
simulation results demonstrate the validity of the proposed method.  
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INTRODUCTION 

 

 The optimal expansion of distribution network to meet the growing electrical demand without 

compromising the reliability is a complicate and nonlinear multi-objective optimization planning. The problem 

often aims at minimizing cost subject to technical and economical constraints. The objective function mainly 

comprises investment, operation, and reliability costs. Distribution network expansion planning has been widely 

investigated (Carvalho et al, 2000; Asakura et al., 2003; Cossi and Mantovani, 2009; Martin and Borges, 2011; 

Wang et al., 2011; Cossi et al., 2012; Millar et al., 2012; El-Zonkoly, 2013; Khodaei and Shahidehpour, 2013; 

Samper and Vargas, 2013a; Samper and Vargas, 2013b). Paper (Ravadanegh and Roshanagh, 2014) implements 

new developed imperialist competitive algorithm for the optimal expansion planning of distribution network. 

The topology of medium voltage distribution network is designed by optimal sizing, sitting, and timing of 

medium voltage network components. A multistage expansion planning is proposed to consider dynamic 

behavior of the system parameters asset management and geographical constraints. In order to reach the global 

solution an efficient coding is developed for ICA parameters. The Greedy algorithm is used to solve the 

minimum spanning tree problem to construct a radial configuration of the mesh network. A sensitivity analysis 

is used to show the robustness of the results with respect to ICA parameters variation. Paper (Borges and 

Martins, 2012) addresses a methodology for active distribution networks dynamic expansion planning based on 

Genetic Algorithms, where Distributed Generation integration is considered together with conventional 

alternatives for expansion, such as, rewiring, network reconfiguration, installation of new protection devices, 

etc. All aspects related to the expansion planning problem, such as multiple objective analysis, reliability 

constraints, modeling under uncertainties of demand and power supplied by Distributed Generation units and 

multistage planning, which are usually dealt with separately, are considered in an integrated model. 

Uncertainties are represented through the use of multiple scenario analysis. An algorithm based on the pseudo-

dynamic programming theory incorporates multiple stages. Popović et al., (2014) provides a hybrid simulated 

annealing (SA) and mixed integer linear programming (MILP) approach for static expansion planning of radial 

distribution networks with distributed generators (DGs). The expansion planning problem is first modeled as 

MILP optimization problem with the goal of minimizing the investment cost, cost of losses, cost of customer 

interruptions due to failures at the branches and at DGs and the cost of lost DG production due to failures at 

branches. In order to reduce the complexity of planning problems the decomposition of the original problem is 

proposed into a number of sequences of sub-problems (local networks) that are solved using the MILP model. 

The decomposition and solution process is iteratively guided and controlled by the proposed SA algorithm that 

employs the proper intensification and diversification mechanism to obtain the minimum total cost solution. 

Aghaei et al., (2013) presents a multiobjective optimization algorithm for the MDEP (Multi-Stage Distribution 
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Expansion Planning) in the presence of DGs using nonlinear formulations. The objective functions of the MDEP 

consist of minimization of costs, END (Energy-Not-Distributed), active power losses and voltage stability index 

based on SCC (Short Circuit Capacity). A MPSO (modified Particle Swarm Optimization) algorithm is 

developed and used for this multiobjective MDEP optimization. In the proposed MPSO algorithm, a new 

mutation method is implemented to improve the global searching ability and restrain the premature convergence 

to local minima. In paper (Sedghi), HV/MV substations, main and reserve MV feeders, dispatch able DG 

sources and storage units are considered as possible solutions for multistage distribution expansion planning. A 

three-load level is used for variable load and some strategies are proposed for DG and storage units operation. A 

modified PSO algorithm is applied to solve the complex optimization problem. Numerical results of the case 

studies show the ability of the modification. Moreover, the proposed strategies improve the distribution network 

from both economical and reliability points of view compared with the other methods. 

 In this paper, distribution network expansion planning is addressed. The problem is presented as a 

constrained optimization programming and solved by using genetic algorithms. A 30-bus test system is 

considered as illustrative test case. Simulation results demonstrate the ability of the proposed method at 

minimizing cost subject to technical constraints such as voltage profile and line flow limitations. 

 

Mathematical Modeling: 

 From view of mathematical modeling, distribution expansion planning is a constrained optimization 

problem and can be formulized as below: 
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 In the presented problem, objective function (1) indicates the investment cost of new lines in network, 

where, vector XLt shows the new lines at stage t and vector ICt represents the investment cost of new lines at 

stage t. This objective function should be minimized during planning. Constraints (2) and (3) show the 

maximum allowable apparent power of lines, and the apparent power from both terminals of each line should be 

less than the proposed maximum value; where, Sij shows the apparent power from bus i to bus j. Constraint (4) 

represents the voltage limitation at all buses of the network. Constraints (5) and (6) show the equilibrium of 

active and reactive powers at all nodes, where Pi and Po show the active input and output powers respectively, 

Qi, and Qo show the reactive input and output powers respectively. 

 

Genetic Algorithm: 

 Genetic algorithm (GA) is a search heuristic that mimics the process of natural selection. This heuristic is 

routinely used to generate useful solutions to optimization and search problems. Genetic algorithms belong to 

the larger class of evolutionary algorithms (EA), which generate solutions to optimization problems using 

techniques inspired by natural evolution, such as inheritance, mutation, selection, and crossover. Genetic 

algorithms find application in bioinformatics, phylogenetics, computational science, engineering, economics, 

chemistry, manufacturing, mathematics, physics, pharmacometrics and other fields (Haupt and Haupt, 2014). 

 In a genetic algorithm, a population of candidate solutions (called individuals, creatures, or phenotypes) to 

an optimization problem is evolved toward better solutions. Each candidate solution has a set of properties (its 

chromosomes or genotype) which can be mutated and altered; traditionally, solutions are represented in binary 

as strings of 0s and 1s, but other encodings are also possible. The evolution usually starts from a population of 

randomly generated individuals, and is an iterative process, with the population in each iteration called a 

generation. In each generation, the fitness of every individual in the population is evaluated; the fitness is 

usually the value of the objective function in the optimization problem being solved. The more fit individuals 
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are stochastically selected from the current population, and each individual's genome is modified (recombined 

and possibly randomly mutated) to form a new generation. The new generation of candidate solutions is then 

used in the next iteration of the algorithm. Commonly, the algorithm terminates when either a maximum number 

of generations has been produced, or a satisfactory fitness level has been reached for the population. A typical 

genetic algorithm requires (Haupt and Haupt, 2014): 

 A genetic representation of the solution domain 

 A fitness function to evaluate the solution domain 

 A standard representation of each candidate solution is as an array of bits. Arrays of other types and 

structures can be used in essentially the same way. The main property that makes these genetic representations 

convenient is that their parts are easily aligned due to their fixed size, which facilitates simple crossover 

operations. Variable length representations may also be used, but crossover implementation is more complex in 

this case. Tree-like representations are explored in genetic programming and graph-form representations are 

explored in evolutionary programming; a mix of both linear chromosomes and trees is explored in gene 

expression programming. 

 

Initialization: 

 Initially many individual solutions are (usually) randomly generated to form an initial population. The 

population size depends on the nature of the problem, but typically contains several hundreds or thousands of 

possible solutions. Traditionally, the population is generated randomly, allowing the entire range of possible 

solutions (the search space). Occasionally, the solutions may be "seeded" in areas where optimal solutions are 

likely to be found. 

 

Selection: 

 During each successive generation, a proportion of the existing population is selected to breed a new 

generation. Individual solutions are selected through a fitness-based process, where fitter solutions (as measured 

by a fitness function) are typically more likely to be selected. Certain selection methods rate the fitness of each 

solution and preferentially select the best solutions. Other methods rate only a random sample of the population, 

as the former process may be very time-consuming. The fitness function is defined over the genetic 

representation and measures the quality of the represented solution. The fitness function is always problem 

dependent. For instance, in the knapsack problem one wants to maximize the total value of objects that can be 

put in a knapsack of some fixed capacity. A representation of a solution might be an array of bits, where each bit 

represents a different object, and the value of the bit (0 or 1) represents whether or not the object is in the 

knapsack. Not every such representation is valid, as the size of objects may exceed the capacity of the knapsack. 

The fitness of the solution is the sum of values of all objects in the knapsack if the representation is valid, or 0 

otherwise. 

 

Crossover and Mutation: 

 The next step is to generate a second generation population of solutions from those selected through genetic 

operators: crossover (also called recombination), and/or mutation. For each new solution to be produced, a pair 

of "parent" solutions is selected for breeding from the pool selected previously. By producing a "child" solution 

using the above methods of crossover and mutation, a new solution is created which typically shares many of 

the characteristics of its "parents". New parents are selected for each new child, and the process continues until a 

new population of solutions of appropriate size is generated. Although reproduction methods that are based on 

the use of two parents are more "biology inspired", some research (Cossi and Mantovani, 2009; Millar et al., 

2012) suggests that more than two "parents" generate higher quality chromosomes. These processes ultimately 

result in the next generation population of chromosomes that is different from the initial generation. Generally 

the average fitness will have increased by this procedure for the population, since only the best organisms from 

the first generation are selected for breeding, along with a small proportion of less fit solutions. These less fit 

solutions ensure genetic diversity within the genetic pool of the parents and therefore ensure the genetic 

diversity of the subsequent generation of children. 

 

Termination: 

 This generational process is repeated until a termination condition has been reached. Common terminating 

conditions are: A solution is found that satisfies minimum criteria; Fixed number of generations reached; 

Allocated budget (computation time/money) reached; The highest ranking solution's fitness is reaching or has 

reached a plateau such that successive iterations no longer produce better results; Manual inspection. 

 

Test System: 

 An 11 kV distribution system with 30 buses is considered as case study. The system has a main feeder and 

three laterals. Single line diagram of the system is depicted in Figure 1. The data for the system are listed in 
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Table 1 and other data can be found in (Eminoglu and Hocaoglu, 2005). Initial voltage magnitude at all buses is 

considered to be the same as the source bus. The power flow results of the initial system is depicted in figure 2 

and it is seen that voltage constraints in some buses are violated and expansion is necessary. The horizon 

planning for expansion is 5 years and load is annually 5% increased. A static expansion planning is assumed and 

all lines are installed at first year. The voltages limitations are 0.95 and 1.05 per unit.  

 
Fig. 1: 30 bus radial distribution system. 

 

 
Fig. 2: Voltage magnitude profile. 

 
Table 1: The network data. 

Feeder section Load R+jX(pu) 

 P(pu) Q(pu)  

1-2 

2-3 
3-4 

4-5 

5-6 
6-7 

7-8 

8-9 
9-10 

10-11 

11-12 
3-13 

13-14 

14-15 
15-16 

6-17 

17-18 
18-19 

19-20 

0.0042 

0 
0.0042 

0.0042 

0 
0 

0.0042 

0.0042 
0.0041 

0.0042 

0.0025 
0.0011 

0.0011 

0.0011 
0.0002 

0.0044 

0.0044 
0.0044 

0.0044 

0.0026 

0 
0.0026 

0.0026 

0 
0 

0.0026 

0.0026 
0.0025 

0.0026 

0.0015 
0.0007 

0.0007 

0.0007 
0.0001 

0.0027 

0.0027 
0.0027 

0.0027 

0.0967+0.0397i 

0.0886+0.0364i 
0.1359+0.0377i 

0.1236+0.0343i 

0.1236+0.0343i 
0.2598+0.0446i 

0.1732+0.0298i 

0.2598+0.0446i 
0.1732+0.0298i 

0.1083+0.0186i 

0.0886+0.0149i 
0.1299+0.0223i 

0.1732+0.0298i 

0.0886+0.0149i 
0.0433+0.0074i 

0.1483+0.0412i 

0.1359+0.0377i 
0.1718+0.0391i 

0.1562+0.0355i 
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20-21 

21-22 

22-23 

23-24 

24-25 
25-26 

26-27 

7-28 
28-29 

29-30 

0.0044 

0.0044 

0.0044 

0.0044 

0.0044 
0.0044 

0.0026 

0.0017 
0.0017 

0.0017 

0.0027 

0.0027 

0.0027 

0.0027 

0.0027 
0.0027 

0.0016 

0.0011 
0.0011 

0.0011 

0.1562+0.0355i 

0.2165+0.0372i 

0.2165+0.0372i 

0.2598+0.0446i 

0.1732+0.0298i 
0.1083+0.0186i 

0.0886+0.0149i 

0.1299+0.0223i 
0.1299+0.0223i 

0.1299+0.0223i 

 

Simulation Results: 

 The proposed method for expansion is performed based on the given test system and results are listed in 

Table 2. It is seen that in order to satisfy the voltage constraints, the new lines are installed at end of feeders. 

The voltage profile after expansion has been shown in Figure 3 and it is seen that the voltage profile has been 

appropriately enhanced. The results show that constraints have been successfully satisfies and also the planning 

cost has been minimized.  

  
Table 2: the expansion planning results. 

From bus To bus Number of lines 

12 23 2 

26 27 2 

27 28 2 

 

 
Fig. 3: voltage magnitude profile after expansion in comparison with before expansion. 

 

Conclusion: 

 Distribution expansion planning based on a radial network was addressed in this paper. The problem was 

presented as a constrained optimization programming and solved by using genetic algorithms optimization 

technique. The proposed planning was tested at a 30 bus test system and simulation results showed the ability of 

the method. The proposed method successfully minimized cost subject to technical constraints such as voltage 

profile, line flow limitations and power flow equations. 
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