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 The main purpose of this study was to investigate Tehran stock exchange total index 

considering two characteristics of TEPIX time series: long memory and nonlinearity. 

The data employed in this study were the monthly data of stock exchange total index 

over the period of 09-1997 to 01-2012. Also, FISTAR model (fractionally integrated 
smooth transition autoregressive), proposed for the first time by Van Dijk (2002) was 

employed.The main reason for using this model was its more accurate and qualitative 

analysis about the fluctuations of total index, especially when these fluctuations are 
driven by a steady process. By programming in MATLAB software, the model was 

extended in a way that the state transition function became exponential which 

transformed FISTAR model into FIESTAR (fractionally exponential integrated smooth 
transition autoregressive) model. The statistical results indicated that stock exchange 

total index had long memory, since the differencing factor was 0.47. Also, it showed a 

nonlinear trend due to the asymmetry in coping with fluctuations such that the 
adjustment speed in the nonlinear model was slower than linear model. 
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INTRODUCTION 

 

 Long term memory, which is also called 

dependency with long term range, explains the 

correlation structure of time series values in long 

intervals. The presence of long term memory in time 

series means that there is a correlation between its 

data even with long time intervals. So, previous 

intervals can be used to forecast future intervals; this 

issue allows for employing a profitable strategy. 

Over the last decade, a major part of time series 

analysis has focused on processes with long memory. 

 For the first time, long memory models in the 

form of fractional integration were introduced to 

econometrics by Granger and Joyeux (1980). 

 A long memory time series can be specified by 

autocorrelation function (ACF) which decreases with 

hyperbolic rate. Hyperbolic decreasing rate is much 

slower than the decreasing rate of autocorrelation 

function in the time series with short memory. 

 Long memory models represent the nonlinear 

structure of capital markets and, as a result, show that 

linear models are inefficient in terms of describing 

the real nature of these markets. The nonlinear 

structure of capital market makes its forecasting 

difficult (Jin Xin & Yao Jin). 

 Moreover, in recent years, the significant 

extensions of nonlinear models have been employed.  

 In financial and economic markets, nonlinear 

threshold models are gaining more and more 

importance; for instance, the threshold between two 

states of inflation and recession. 

 One of the most widely used models in threshold 

models is STAR (smooth transition autoregressive) 

model. STAR model is employed to examine the 

nonlinear characteristics of time series. In this model, 

the transition function consists of transition 

parameters,  threshold parameter, and transition 

variable. In most applications, the transition function 

is an exponential or logistic function which indicates 

the nonlinear structure of time series. The 

nonlinearity property in time series can be discussed 

using asymmetry in variable dynamics; for example, 

the desired shocks have more important and a more 

stable effect on the economy than the undesired ones. 

So, in this paper, both of these two characteristics of 

economic and financial time series (i.e. long memory 

and nonlinearity) were discussed. Therefore, with 

respect to the suggestions presented in this paper, the 

aim was to find out whether stoke exchange total 

index had long term memory or followed a nonlinear 

process. So, FISTAR model, which was introduced 

for the first time by Van Dijk (2002), was employed 



43                                                                  Fatemeh Irani Kermani et al, 2015 

Journal of Applied Science and Agriculture, 10(6) April 2015, Pages: 42-51 

 

 
 

to investigate Tehran stock exchange total index, 

where FI denotes fractional integration process and is 

determined by parameter d .  

  

2) Literature review:  

Van Dijk was the first one who investigated FISTAR 

model. This model can simultaneously analyze both 

long memory and nonlinearity in time series and also 

make long term forecasts.  

 Van Dijk and Hans Franses (2002) studied the 

U.S. unemployment rate using FISTAR model. The 

U.S. monthly unemployment rate has two important 

empirical characteristics: shocks have a relatively 

stable effect and  increase of unemployment rate 

seems to be more rapid in the crisis than its 

decreasing speed at the time of thrive, which 

indicates the asymmetric effects of shocks. 

 In another study by Small Wood (2004), mixed 

testing was presented for long term memory and 

nonlinear model; his work was a case study on the 

U.S. PPP marker. Two econometric techniques were 

employed to find unit root, which were long term 

memory and nonlinear models. While using long 

term memory and regime change models have been 

separately widespread but it is clear that these two 

techniques are interrelated. He employed mixed 

testing for both characteristics (long term and 

nonlinear) to determine the importance of each 

technique in this content. He also found some pieces 

of evidence for nonlinear behavior (ESTAR) of real 

exchange rate in many European and developed 

countries, in contrast to the countries outside the 

European Union such as Japan and Canada which did 

not  show any nonlinear behavior. Moreover, it 

should be mentioned that, in the countries with a 

nonlinear behavior, there were also some significant 

evidence of long term memory. 

 In another study by Maria Caporale and Luis Gil 

(2004), the U.S. unemployment rate was investigated 

in FISTAR model framework. This model can 

analyze asymmetry and long memory characteristics 

of unemployment rate. The empirical results 

indicated that the U.S. unemployment rate in the 

form of fractional integration process combined with 

several nonlinear functions of employment demand 

variables (oil real price and real interest rate) can 

have better real results. 

 In a study by Swanson et al. (2005), long term 

and short term memory models were compared in 

relation to the output of the U.S. daily stock. They 

investigated the effects of trade cycles on the forecast 

performance of ARFIMA, AR, MR, ARMA, 

GARCH, and STAR models and concluded that the 

trade cycles had no effect on the forecast 

performance of ARFIMA model. 

 Mohamed Boutahar et al. (2006) investigated 

FISTAR model based on the primary work done by 

Dijk, but in FIESTAR model framework and on a 

monthly basis for the U.S. real effective exchange 

rate over the period of June 1978 to April 2002. They 

proposed two approaches for forecasting the real 

effective exchange rate: simultaneous estimation and 

step-by-step estimation. Employing FIESTAR model 

provided better forecasts, especially compared with 

the linear models and random walk. 

 In another research by Mohamed Boutahar and 

Adnen Ben Nasr (2007), inflation was studied in the 

nonlinear long term memory model framework, but 

on a seasonal basis. In this paper, three 

characteristics of long term memory, nonlinearity, 

and seasonality of the U.S. inflation rate, were 

discussed. Therefore, SEAFISTAR model, which is 

the extension of FISTAR model, was employed and 

it was found that the seasonal ARFI models were 

executable by FISTAR models. 

 In another study by Mohamed Boutahar et al. 

(2008), fractionally integrated models with an 

emphasis on parameter d were investigated. By 

supposing that fractional parameter d  was random 

and by introducing a FLSTAR model, they presented 

an estimation method for this model. The results 

indicated that this new model provided a framework 

for describing dynamicity in some financial series. 

 Benamar et al. (2009) investigated the 

purchasing power parity in the northern African 

countries using a FISTAR model. In this study, both 

nonlinearity and long memory were employed. Using 

these techniques independently can be desirable in 

some cases for discussing PPP; but, in most cases, it 

fails. In fact, the empirical evidence has shown that 

these two models are technically interrelated. In this 

paper, Benamar et al. employed FISTAR model, 

which was introduced by Franses, Van Dijk, and 

Paap (2002) for investigating PPP. The results 

indicated that long memory and nonlinearity were 

not accepted for all the discussed countries (northern 

Africa) and in relation to the exchange rate. Also, the 

results demonstrated that equal purchasing power 

cannot be accepted in a country like Tunesia. There 

were no pieces of evidence for long term memory in 

Egypt and Algeria. Moreover, the studies revealed 

that, when only ESTAR model was employed, the 

exchange rate behavior could be inaccurately 

interpreted; this can be the reason why FISTAR 

model is used to deal with the exchange rate shocks, 

especially when they are characterized by a long 

term process. 

 Simon Yoya and Shittu (2009) investigated 

forecast performance of ARMA and AFRIMA 

models. Application of this research was related to 

the exchange rate (UK pound, U.S. dollar). The 

classic approach for economic series models is to use 

Box-Jenkins methodology for ARMA and AFRIMA 

models which depends on whether time series is 

static or not. If time series has a long term property, 

forecasts performance is not reliable based on 

ARIMA model. Therefore, the main issue is the 

forecast performance of ARMA (p,d,q) and 

AFRIMA (p,d,q) for the static type of time series 

which has a long term property. 
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 They evaluated their time series from 1971 to 

2008 and found that, by employing Dickey–Fuller 

test, non-stationarytime series was rejected at all 

levels; but, KPSS approved the existence of long 

term memory considering that the fractional 

parameter value was d=0.4956. These results 

approved time series statist and the existence of long 

term memory. Finally, ARFIMA model was found to 

be a better indicator of current economic facts in 

these two countries. 

 In another study by Simon Yaya and Shittu 

(2010), inflation was investigated in FILSTAR 

model framework. In their opinion, long term 

memory and nonlinearity were two key 

characteristics of macroeconomic time series which 

were specified by continuous shocks. It seems that 

they had a more rapid increase at the time of 

recession than the decrease at the time of booming. 

So, this paper was aimed to apply FILSTAR model 

on the inflation rate such that a better estimation of 

parameters could be obtained. As a result, interesting 

ratios were found for the inflation rate in developing 

and developed countries. 

 

3) Model presentation: 

 In recent years, there have been many studies on 

determining stock exchange behavior all around the 

world. In all of these studies, one of the important 

results is that the stock exchange index is non-

stationary time series and a differencing process is 

employed to make it stationary. 

 The starting point for the literature related to the 

fractionally integrated processes has been the fact 

that many financial and economic series are neither 

i(0) nor i(1). They show significant correlations in 

their very long interruptions which is referred to as 

(hyperbolic). When this series is differentiated once, 

it seems that one-time differencing is too much for 

them (Banerjee &Urga, 2005). 

 Therefore, ARFIMA(p,d,q) is a useful class of 

models for the time series with a long term memory 

behavior. These processes are the extension of 

integrated moving autoregression processes 

(ARIMA), where the differencing parameter can take 

a non-integer number (Man & Tiao, 2006). 

 So, with respect to the above definitions, 

partially integrated process in terms of the above 

relation is a process with long term memory. The 

process 𝑦𝑡  is partially integrated with order d .   

(1-L)
d 
Yt = Xt               (1) 

 In this relation, L is interrupt operator, -

0.5<d<0.5 and𝑥𝑡 is a stationary process and has a 

positive evaluation spectrum at all frequencies. Now, 

if 𝑥𝑡  is integrated by the order of zero and also is 

weak stationary and 0<d<0.5, the process 𝑦𝑡  has long 

term memory in terms of the second definition and 

all its autocorrelations are positive and 

with (ازبینمیروند)  hyperbolic rate.            

 For -0.5<d<0 (absolute value), the sum of 

process autocorrelation values approaches a fixed 

value; so, the first definition has long term memory. 

When 0.5<d<1, the process 𝑦𝑡 is not stationary and 

non-invertible, because the process variance is not 

limited. Although the series is non-stationary in this 

case, it can be observed that, according to Hosking's 

formula, autocorrelation function still approaches 

zero. This issue implies that the process memory is 

limited and the shock on the process is reflected in 

the mean. Hence, these processes are called 

(returning to mean). When d>1, the process does not 

return to the mean and the shock on the process 

causes the process to deviate from the starting point. 

 

 
 

Fig. 1: Characteristics of Different d Values. 

 

3-1) Modified rescaled range analysis:  

 In this research, it was preferred to employ MRS 

test which could provide as more accurate and 

reliable response than other methods for estimating 

d. Lo (1991) proposed a stronger test than rescaled 

range analysis which is known as modified rescaled 

range analysis. MRS statistic is given as: 

 

     (2) 

 q is interrupt order and there is no special 

statistical rule for it. For q=0, the value of MRS 

statistic is rescaled range statistic. 

 After calculating R/S (n) for different N's, H
statistic is given by estimating Relation (2) using 

OLS method. 

LognHLogCnSLogR .)(/ 
          (3)
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 If 0.5≤H≤1, it can be concluded that the studied 

series has long term memory. Pitters (1999) defined 

the relationship between H and d as follows: 
dH  5.0             (4) 

 

3-2) ARFI(p)model: 

If ARFIMA model is defined as follows: 

tt

d FyyL  )1(
            (5)

 

 And if autoregressive model is given as: 

tptptt yyy    ...110
          (6)

 

 Then, ARFI model is given by combining the 

above two models: 

tptptt FyFyFy    ...110           (7)
 

 ARFI model is really an autoregressive 

fractionally integrated model which examines 

linearity and long memory characteristics in time 

series. In fact, this model is presented to be compared 

with FISTAR model and give a better insight into the 

mentioned model. 

 In FISTAR model, the characteristic of smooth 

transition around a threshold point can be referred to, 

which depending on the given issue, can take 

exponential or logistic state in a way that could 

consider the nonlinearity characteristics of time 

series; but, ARFI models do not have such a 

capability. 

 The existence of long term memory in asset 

outputs has important practical and theoretical 

aspects. First, since the long term memory is a 

special form of nonlinear dynamics, it is impossible 

to model it using linear methods; so, developing and 

using nonlinear pricing models are encouraged. The 

existence of long term memory in financial market 

negates the weak form of market efficiency 

hypothesis and also challenges the linear models of 

asset pricing and indicates that nonlinear models 

should be used in pricing capital assets. 

 

3-3) Smooth transition models: 

 In recent years, significant extensions of 

nonlinear models have been employed. In financial 

and economic markets, the nonlinear threshold 

models are gaining more and more importance; for 

instance, the threshold between two states of 

inflation and recession. So, a model called STAR and 

its different states are used to investigate this 

behavior. There are two different types of STAR 

model which are different from each other in 

autoregressive delay degrees. Logistic STAR model 

is an extended from of standard autoregressive model 

where autoregressive coefficient has a logistic 

function.  
  tptptptptt yyyyy    ...... 110110

                  (8) 

  1

1 ))(exp(1


  cyt  

 In the above equation, parameter γ is called 

smoothness parameter and c is threshold parameter 

I n a limit state if γ comes close to zero or infinite 

LSTAR model is converted into a AR(P) model, 

because 𝜃 will be constant under this conditions. 

بینصفروبینهایت،درجۀتأخیراتىرگرسیىبستگیبهمقدارγبهازایمقادیر

1tyدرشکلنماییمدل. خىاهدداشت(ESTAR) 

STARمقدارθدررابطهبالابامقدارزیرجایگسینمیشىد. 

  0)(exp1 2

1    cyt  
 Otherwise, the model shows a nonlinear 

behavior. The interesting point is that ESTAR model 

coefficients are symmetric around point 𝑦𝑡−1=c . If𝑦𝑡  

comes close to c, then 𝜃 will come close to zero; so, 

𝑦𝑡  behavior will change based on relation 𝛼0 +
𝛼1𝑦𝑡−1 + ⋯ + 𝛼𝑝𝑦𝑡−𝑝 + 𝜀𝑡 .  𝐼𝑓 𝑦𝑡−1 from c; then, 𝜃 

is inclined toward 1; so, 𝑦𝑡  behavior will be 

according to the relation (𝛼0 + 𝛽0) +  𝛼1 +
𝛽1 𝑦𝑡−1

+ ⋯ + 𝜀𝑡  . 

 

3-4) Terasvirta test: 

 One of the tests employed for selecting 

nonlinear function form is Terasvirta test, based on 

which the nonlinear pattern is specified as LSTAR or 

ESTAR. If delay parameter d is supposed to be 

constant, Equation 10 is obtained using regression 

no.9 and by forming Taylor extension on this 

equation and substituting 𝑓𝑦𝑡  by 𝑦𝑡 . 

 The null hypothesis is: 

H0: 𝜋2𝑖 = 𝜋3𝑖 = 𝜋4𝑖 = 0             𝑖 = 1,2, … , 𝑝       (9) 

𝑦𝑡 =
𝜋0 +
 𝜋1𝑖𝑦𝑡−𝑖 +

𝑝
𝑖=1

 𝜋2𝑖𝑦𝑡−𝑖𝑦𝑡−𝑑 +
𝑝
𝑖=1  𝜋3𝑖𝑦𝑡−𝑖𝑦𝑡−𝑑

2 + 𝜀𝑡
𝑝
𝑖=1        (10) 

𝑓𝑦𝑡 = 𝜋0 +  𝜋1𝑖𝑓𝑦𝑡−𝑖 +  𝜋2𝑖𝑓𝑦𝑡−𝑖𝑓𝑦𝑡−𝑑 +
𝑝
𝑖=1

𝑝
𝑖=1

 𝜋3𝑖𝑓𝑦𝑡−𝑖𝑓𝑦𝑡−𝑑
2 +  𝜋4𝑖𝑓𝑦𝑡−𝑖𝑓𝑦𝑡−𝑑

3 + 𝜀𝑡
𝑝
𝑖=1

𝑝
𝑖=1   (11) 

 If the null hypothesis (H0) is rejected, 

nonlinearity of the model is rejected. If 𝐻1 is 

rejected, LSTAR model is selected. If 𝐻1 is not 

rejected, but 𝐻2 is rejected, ESTAR model is 

selected. Also, if  𝐻1 and 𝐻2 are not rejected, but 𝐻3 

is rejected, ESTAR model is selected. 

𝐻1: 𝜋4𝑖 = 0         ,              𝑖 = 1,2, … 𝑝                  (12) 

𝐻2: 𝜋3𝑖 = 0 𝜋4𝑖 = 0      ,            𝑖 = 1,2, … 𝑝        (13) 

𝐻3: 𝜋2𝑖 = 0𝜋3𝑖 = 𝜋4𝑖 = 0      ,        𝑖 = 1,2, …𝑝  (14) 

 

3-5) FISTAR model:  

 If AFRIMA model is given as: 

tt

d FyyL  )1(
        (15)

 

 And if STAR model is given as: 
  tptptptptt yyyyy    ...... 110110             (16)

 

 Then, FISTAR model is obtained by combining 

these two models which was introduced for the first 

time by Van Dijk (2002). 

              

            (17) 
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3-6) FIESTAR model:  

 If, in the above model, the exponential form of 

STAR model is used instead of𝜃, FIESTAR model is 

obtained which is as follows: 
     tttttt FycFyFyDFyFy    110

2

11232110 )(exp1

             (18)
 

 

3-7) Methodology: 

 Since the coefficients of FISTAR model are as 

products, they cannot be estimated by OLS method. 

Here, it is necessary to employ the nonlinear least 

squares (NLS) method to obtain the accurate 

estimation of coefficients. Unfortunately, values of γ 

and c  cannot be simultaneously determined based 

on many numerical methods used in estimating 

parameter values. So, the initial conditions of c and 

γ should be guessed to use these numerical methods. 

Therefore, a general method is that the coefficients 

are estimated simultaneously by reasonable initial 

guesses and using NLS method. Therefore, what is 

obtained will be a new estimation for γ. At the 

second stage, γ is set equal to its estimated value and 

a new estimation of c  is obtained. This process is 

repeated until the subsequent values of γ and c
become consistent; in other words, the interval 

between their two subsequent values becomes less 

than a specified limit. When the values of parameters 

reach the consistency limit, all the model parameters 

can be simultaneously estimated using final 

estimated values. 

 Based on initial reasonable guesses and using 

the known values adopted for c , a specified and 

constant number is given for γ and other coefficients 

of model can be estimated. After estimating the 

model coefficients, 𝜃, which is the exponential form 

of STAR model here should be estimated. A 

programming technique in MATLAB software is 

employed for this estimation. For each period 

(month), a 𝜃 is obtained and the total mean is 

𝜃=0.059 which is positive. 

 

4) Data: 

 In this paper, Tehran stock exchange total index 

(Tepix) over the period of 1997-2011 was employed. 

So, the size of the samples used in this study was 172 

observations per monthly index. 

 Tehran stock exchange total index trend is 

shown in Figure 2. The related data were collected 

from Tehran stock exchange website and Tadbir 

Pardaz software. 

 

4-1) Data persistency:  

 Identifying a random trend in a time series is 

easily possible by (generalized) unit root tests. 

Augmented Dickey–fuller (ADF) is usually 

employed to examine the data persistency. But, this 

method gives an accurate estimation of data only 

when there is no structural break in the studied time 

series. It should be mentioned here that, due to the 

selling of the shares of block of telecommunication 

company and Isfahan Oil Refinery Company and 

also the notable increase in the selling of 

governmental institutes to the private sector in the 

early 2001, it can be guessed that the stock exchange 

total index has experienced a structural break. 

Accordingly, using Quandt-Andrews test and also 

chow test, a structural break was found in the second 

month of 2009. So, Phillips-Perron test was 

employed to investigate the persistency of the 

mentioned time series. Therefore, augmented 

Dickey–fuller (ADF) test was of no help in terms of 

examining the persistency of time series. 

 

 
 

Fig. 2:               

 

 In Phillips-Perron test,   is given as  =1 

which indicates the existence of unit root in the given 

time series. The studied time series becomes 

persistent by the first differencing and its 

autocorrelation function rapidly approaches zero. 

4-2) Quandt-Andrews test: 

 In fact, this test is applied to determine whether 

there is a structural break in the studied time series or 

  tptptptptt FyFyFyFyFy    ...... 110110



47                                                                  Fatemeh Irani Kermani et al, 2015 

Journal of Applied Science and Agriculture, 10(6) April 2015, Pages: 42-51 

 

 
 

not. It is based on chow test. Therefore, it is 

necessary to provide a brief description of this test. 

 There are three methods for calculating Chow 

test: 1- F statistic test which is based on the 

comparison of residuals squared sum in constrained 

and unconstrained models and is given as follows: 

)2/()''(

/))''('(

2211

2211

kTuuuu

kuuuuuu
F






      (19)

 

 In this equation, 
'

u u  is residuals squared 

sum in constrained model, 
'

i iu u is residuals 

squared sum in unconstrained model, T is the 

number of observation, and k is the number of 

parameters in the equation. 

 

LR (likelihood ratio) test: 

 It is based on𝑥2 distribution with (m-1)k degrees 

of freedom. The null hypothesis indicates that there 

is no structural break. Moreover, in this test, m is the 

number of partition mode for data. 

 

Wald test: 

 This test is based on 𝑥2distribution. 

 Now, based on these two tests (i.e. Wald test and 

test LR) with respect to F distribution and in the 

framework of the following three formulas, Quandt–

Andrews can be calculated. 

))((max
21

TFMaxF
TTT 



     (20) 
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AveF

       (22) 
 Distribution of these test statistics is non-

standard. Andrews (1993) and Hansen (1997) have 

presented a standardized distribution and a suitable 

estimation of these tests. 

 
Table 1:  Results of Quandt-Andrews test. 

Statistic Value Prob. 
Maximum LR F-statistic (1988M02) 10.04413 0.093 

Maximum Wald F-statistic (1988M02) 10.04413 0.093 
Exp LR F-statistic 2.150707 0.1529 

Exp Wald F-statistic 2.150707 0.1529 
Ave LR F-statistic 1.601357 0.5195 

Ave Wald F-statistic 1.601357 0.5195 

 
Table 2: Results of Chow test. 

F-statistic 10.0441 Prob. F(2,167) 0.0001 

Log likelihood ratio 19.4233 Prob. Chi-Square(2) 0.0001 

Wald Statistic 20.0883 Prob. Chi-Square(2) 0 

  

4-3)  Phillips–Perrontest: 

 Since the persistency of time series data in 

Phillips–Perrontest framework was considered, it 

was necessary to state the desired statistic defined as 

follows: 

t

i

tittttt eXXtTDDTBdDUX 


 



1

1110 )(

           (23)

 

 In this statistic, tDU denotes the variation in 

the intercept, DT  denotes variations in the slope of 

data curves, and therefore DTB examines the 

desired jump in data. If  tends toward 1, it indicates 

the existence of unit root in the studied time series. 

 
Table 3: Results of Phillips–Perrontest. 

Variable Coefficient Std. error t-Statistic Prob. 

C 137.2974 70.56531 1.945679 0.0534 

TDT 2.813358 0.857617 3.280434 0.0013 

P(-1) 0.983892 0.008491 115.8716 0 

D(P(-1)) 0.382202 0.07081 5.3976 0 

R-squared 0.993922 Mean dependent var 8902.725 

Adjusted R-squared 0.993812 S.D. dependent var 6265.876 

S.E. of regression 492.9034 Akaike info criterion 15.26175 

Sum squared resid 40330325 Schwarz criterion 15.33554 

Log likelihood -1293.249 Hannan-Quinn criter. 15.29169 

F-statistic 9048.105 Durbin-Watson stat 1.921483 

Prob(F-statistic) 0 
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4-4) Results of optimized interrupt determination: 

 In order to find the optimized degree of vector 

autoregression, the interrupt length considered by the 

software was tested. The minimum criterion of all the 

three criteria of Akaike, Schwarz, and Hannan-

Quinn, was indicated by an asterisk. The minimum 

criterion of the three criteria suggested the interrupt 

length of 1. The optimized length was 1 based on the 

results obtained from Eviews software. 

 
Table 4: Results of determining optimized interrupt . 

Lag Log L LR FPE AIC SC HQ 
0 2215.94 NA 1.62e+09 26.88412 26.92177 26.89941 
1 1587.77 1233.508* 841224.4* 19.31836* 19.43130* 19.36421* 
2 1584.92 5.521376 853089.0 19.33234 19.52058 19.40875 
3 1584.08 1.603669 886484.5 19.37067 19.63421 19.47765 
4 1579.54 8.585750 880796.4 19.36412 19.70295 19.50166 
5 1577.98 2.904631 907441.8 19.39374 19.80787 19.56185 
6 1576.11 3.454083 931362.5 19.41950 19.90893 19.61818 

 

4-5) Estimation and evaluation of the linear model: 

ARFI model: 

 The value obtained for H was 0.97; using the 

formula H=0.5 +d, the value of d became d=0.47. As 

d was between 0 and 0.5, the existence of long 

memory in the studied time series was shown. 

Having known the parameter d, ARFI model as a 

fractionally integrated autoregressive model can be 

estimated using Eviews software and its theoretical 

form is as follows. Statistical results of this model 

are estimated in the following table. 

tptptt FyFyFy    ...110         (24) 

 
Table 5: Results of Arfi model.

 

Variable Coefficient Std. error t-Statistic Prob. 

C 31.36495 1.270192 24.69307 0 

AR(1) 0.476083 0.069319 6.868043 0 

AR(12) 0.168448 0.085603 1.96777 0.0509 

R-squared 0.259912 Mean dependent var 31.29694 

Adjusted R-squared 0.250423 S.D. dependent var 6.571345 

S.E. of regression 5.689345 Akaike info criterion 6.333755 

Sum squared resid 5049.508 Schwarz criterion 6.391659 

Log likelihood -500.5335 Hannan-Quinn criter. 6.357269 

F-statistic 27.39283 Durbin-Watson stat 1.826563 

Prob(F-statistic) 0 
   

 

4-6) Estimation and evaluationof the nonlinear 

model 

STAR model estimation: 

 With respect to the above table, F-statistic 

approved the threshold behavior. Now, it should be 

specified which pattern was more appropriate. With 

regard to the conducted estimations and considering 

T statistics, the statement 𝑓𝑦𝑡−𝑖𝑓𝑦𝑡−𝑑
2  {

2( 1)* ( 2)fy fy  } cannot be omitted from the 

equation model. So, the presence of ESTAR model 

was accepted. 

 

Table 6: Results of Terasvirta test. 

Variable Coefficient Std. error t-Statistic Prob. 

C 13.97207 2.311897 6.043552 0 

FY(-1) 0.633401 0.095101 6.660275 0 

FY(-1)*FY(-2)^2 -7.62E-05 3.66E-05 -2.083386 0.0387 

R-squared 0.261553 Mean dependent var 31.23629 

Adjusted R-squared 0.252656 S.D. dependent var 6.377826 

S.E. of regression 5.513571 Akaike info criterion 6.269894 

Sum squared resid 5046.312 Schwarz criterion 6.325455 

Log likelihood -526.8061 Hannan-Quinn criter. 6.292442 

F-statistic 29.398 Durbin-Watson stat 1.970733 

Prob(F-statistic) 0 
   

 

Fiestar model: 

 Based on the reasonable initial guesses and 

using the specified values considered for c   and 

with several repetition periods and necessary 

convergences in Eviews software, fixed and certain 

numbers were obtained for c and γ as 27.94 and 

0.0014, respectively. Moreover, other coefficients of 

the model were obtained simultaneously, as shown in 

the following table. 

 As indicated before, the model was FIESTAR as 

follows:  

     tttttt FyCCcFyFyCDCFyCCFy    1

2

1121 )6()5()(exp1)4()3()2()1(

(25)                    
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Table 7: Results of  Fiestar  model. 
 

Variable Coefficient Std. error t-Statistic Prob. 

C(1) -0.02941 6.269417 -0.00469 0.9963 

C(3) -1.03537 1.612298 -0.64217 0.5217 

C(4) 0.195772 0.085979 2.276979 0.0242 

C(2) 0.826015 0.188339 4.385786 0 

c  27.94425 13.761 2.030685 0.044 

C(5) 24.10027 23.99844 1.004243 0.3169 

C(6) -0.95304 0.328538 -2.90085 0.0043 

R-squared 0.320664 Mean dependent var 31.2969 

Adjusted R-squared 0.293848 S.D. dependent var 6.57135 

S.E. of regression 5.522086 Akaike info criterion 6.29842 

Sum squared resid 4635.003 Schwarz criterion 6.43352 

Log likelihood -493.724 Hannan-Quinn criter. 6.35328 

F-statistic 11.958 Durbin-Watson stat 1.75176 

Prob(F-statistic) 0 
   

 

 Finally, using programming technique in 

MATLAB, the total mean for 𝜃 was given as 0.059 

(it should be mentioned that 𝜃 was the exponential 

state of the present model and caused FISTAR to be 

converted into FIESTAR). 

 

4-7) Interpretation of the results:  

Arfi model: 

 In Table 5 (shown above), which provides the 

estimation results of ARFI model, c denotes 

intercept. AR(1) is the coefficient of one period ago 

(on month ago) and indicates that 0.47 of fluctuation 

effects remains in the next month. AR(12) is the 

coefficient of one year ago in the model and indicates 

that 0.16 of fluctuation effects remains in the next 

year. 

 

Fiestar model: 

 In Table 7 presented above, the estimation 

results of FIESTAR model are demonstrated. As is 

known, this model can be divided into two linear and 

nonlinear parts. 

 

Linear part of the model: 

 In the mentioned table, c(1) denotes intercept of 

the linear part, c(3) shows the January effect in the 

model and is known as dummy variable coefficient 

in the model, c(4) is the coefficient of one year ago 

(12 periods ago) in the model which indicates that 

0.19 of fluctuation effects remains in the next year, 

and c(2) is the coefficient of one period ago in the 

model (a month ago) which indicates that  0.82 of 

fluctuation effects remains in the next month. 

 

Nonlinear part of the model: 

 c  is the (local) threshold parameter in the 

model which was converged into 27 .94, c(5) denotes 

the intercept, and c(6)=-0.95 is the coefficient of one 

period ago in the model (one month ago); since the 

total mean of 𝜃 was 0.059, it can be stated that by 

taking into account the nonlinear part of the model, 

the fluctuation effect became stationary more rapidly. 

 

Because:  

 By supposing the linear effect of the model: 

1)2(  tt FyCFy
   (26) 

 

       (27) 

 

 By supposing the linear and nonlinear effect of 

the model: 

1))6()2((  tt FyCCFy 
     (28) 

1)95.0059.082.0(  tt FyFy
    (29)

 

 Also, it can be concluded that the closer 𝜃 is to 1 

(provided that c(6) becomes negative), the more 

rapid the fluctuation effect in the stock exchange 

would be stationary. Also, the closer 𝜃 is to 0 (by 

supposing negative c(6)), the later the fluctuation 

effect on the stock exchange would diminishe and 

the old information would be more valuable. It can 

be generally concluded that the fluctuation 

adjustment speed in ARFI linear model is more rapid 

than FIESTAR linear model in terms of model 

estimations. Also, if FIESTAR model is divided into 

two linear and nonlinear parts, the fluctuations 

adjustment speed would be higher than the situation 

where there is only the linear part of FIESTAR 

model. 

 

4-8) Lagrange coefficient test (LM): 

 After estimating the appropriate model, in order 

to ensure that ARCH effect exists in the selected time 

series, Lagrange coefficient test was employed. The 

null hypothesis indicated the absence of ARCH 

effect in the mentioned data. Rejection of this 

hypothesis means the acceptation of the opposite 

hypothesis and presence of ARCH effect in the data 

related to time series. The following table shows 

Lagrange coefficient test to identify ARCH effects. 

 

 

 

 

182.0  tt FyFy
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Table 8: Breusch-Godfrey serial correlation LM test. 
F-statistic 6.88339 Prob. F(1,151) 0.0096 

Obs*R-squared 6.93207 Prob. Chi-Square(1) 0.0085 

 

 With respect to the probabilities related to F-

statistics in this table, the null hypothesis indicating 

the absence of ARCH effect was rejected and the 

opposite hypothesis was accepted. It is clear that 

accepting 
1H implies the existence of ARCH effect. 

After ensuring the existence of conditional variance 

unlikelihood phenomenon or ARCH effect in the 

considered time series, the standard model GARCH 

(1,1) was estimated using the given interval for the 

time series. 

 

4-9) Results of Garch test: 

 

Table 9: GARCH = C(1) + C(2)*RESID(-1)^2 + C(3)*GARCH(-1). 

Variable Coefficient Std. error z-Statistic Prob. 

C(1) 0.00355 0.023937 0.14841 0.882 

C(2) 0.33839 0.116734 2.89885 0.0037 

C(3) 0.76978 0.075592 10.1834 0 

R-squared 0.28007 Mean dependent var 31.297 

Adjusted R-squared 0.23658 S.D. dependent var 6.5714 

S.E. of regression 5.74163 Akaike info criterion 5.1445 

Sum squared resid 4911.99 Schwarz criterion 5.3375 

Log likelihood -398.99 Hannan-Quinn criter. 5.2229 

F-statistic 6.44044 Durbin-Watson stat 1.7932 

Prob(F-statistic) 0 
   

 

 As shown in Table 9,GARCH numerical 

coefficient used in this model was 0.76 . It should be 

noted that the bigger the GARCH numerical 

coefficient than 1, the later the effect of response to 

shocks and fluctuations would diminish. In other 

words, by introducing new shocks to the market, the 

total index would be affected for a longer time. In 

this market, the older information is more important 

than the recent information and the effect of such 

information diminishes more lately (Magnus & Fusu, 

2006). 

 

5)Conclusion: 

 The general conclusions obtained from this 

paper can be stated in the form of answers to the 

model hypothesis as follows: 

 

Stock exchange total index has long term memory: 

 As observed in Hurst statistical estimation by 

EXCEL software, H is given as H=0.97; hence, 

d=0.47. It was found earlier that, if 0<d<0.5,then 

there is long memory in time series; i.e. Tehran stock 

exchange total index has long memory. Also, if some 

fluctuations increase in the index, its effect will 

remain for a longer time. 

 The existence of long term memory in financial 

and economic markets negates the weak form of 

market efficiency hypothesis. Also, the linear models 

challenge the assets pricing and indicate that 

nonlinear models should be used in capital assets 

pricing. 

 

Stock exchange total index follows a nonlinear 

process: 

  As stated before, smooth transition models, 

especially ESTAR, are more effective in converging 

model parameters, especially γ and c , and better fit 

the data. 

 This point indicates that Tehran stock exchange 

total index has a nonlinear structure. Moreover, this 

characteristic has an important role in qualitative 

description and more accurate forecasting of time 

series. In general, it can be concluded that the 

fluctuation adjustment speed in ARFI linear model is 

more rapid than FIESTAR nonlinear model in terms 

of model estimations. Also, if FIESTAR model is 

divided into two linear and nonlinear parts, the 

fluctuation adjustment speed is more rapid than the 

situation where there is only the linear part of 

FIESTAR  model.  

 

5-1)Applied results: 

 This research showed how to investigate the 

stock exchange total index in FISTAR model 

framework with an emphasis on considering both 

nonlinearity and long term memory characteristics of 

stock exchange index. With respect to this 

characteristic of stock exchange total index, some 

qualitative analyses were performed that can be the 

basis of more accurate planning, especially long term 

forecasts for more complicated models (nonlinear 

time series). Also, the positive and negative policies 

can be implemented to cope with the effects of 

shocks and fluctuations on the index over the 

relatively long periods. Moreover, the analysis of this 

model can be a basis for investigating different issues 

in the time series area. 
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